Перевод: с английского на все языки

со всех языков на английский

to manufacture an invention

  • 1 manufacture of invention

    Универсальный англо-русский словарь > manufacture of invention

  • 2 manufacture of invention

    Patent terms dictionary > manufacture of invention

  • 3 actual manufacture of invention

    Универсальный англо-русский словарь > actual manufacture of invention

  • 4 actual manufacture of invention

    Patent terms dictionary > actual manufacture of invention

  • 5 manufacture

    2) изделие, продукт ( патентоспособный объект)
    3) Брит. производство (в патентном законодательстве это понятие включает не только изготовление изделия, но и любой способ его сохранения, улучшения или восстановления)
    - manufacture of invention
    - actual manufacture of invention
    - patented manufacture
    * * *
    брит. производство (в патентном законодательстве Великобритании это понятие включает пе толькс изготовление изделия, но и любой способ его сохранения улучшения пли восстановления)

    Patent terms dictionary > manufacture

  • 6 invention

    сущ.
    1) общ. открытие, изобретение (установление неизвестных ранее объективно существующих закономерностей или явлений окружающего мира, а также способов организации материи или человеческой деятельности для получения какого-л. практического результата)
    Syn:
    See:
    2) пат. изобретение (новое техническое решение задачи, поднимающее существующий уровень техники)
    See:

    Англо-русский экономический словарь > invention

  • 7 Colt, Samuel

    SUBJECT AREA: Weapons and armour
    [br]
    b. 19 July 1814 Hartford, Connecticut, USA
    d. 10 January 1862 Hartford, Connecticut, USA
    [br]
    American inventor of the revolver.
    [br]
    The son of a textile manufacturer, as a youth Colt displayed an interest in chemistry, largely through bleaching and dyeing processes used in his father's business, and lectured to lay audiences on it. In 1832 he took ship as a deckhand on a voyage to India; the concept of the revolver is supposed to have come to him from watching the ship's wheel.
    Upon his return to the USA he described the idea to the US Patent Office, but did not register it until four years later, having taken out patents in Britain and France during a visit to Europe in 1835. He formed a company to manufacture his invention, but it failed in 1842. Even so, note had been taken of his weapon, and in 1846, upon the outbreak of the war with Mexico, the US Government placed an order for his revolver that was executed by the Eli Whitney arms factory in his native Hartford. Thereafter Colt set up another company, this time successfully. He also took an interest in other fields, experimenting with a submarine battery and electrically detonated mines, and opened a submarine telegraph between New York and Coney Island in 1843.
    CM

    Biographical history of technology > Colt, Samuel

  • 8 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

  • 9 home

    1. сущ.
    1)
    а) общ. дом, жилище
    Syn:
    See:
    б) общ. логово, нора, гнездо (место, где живет какое-л. животное)
    2) общ. родной дом, родина
    Syn:
    2. прил.
    1)
    а) общ. домашний; бытовой

    home service agent — агент, обслуживающий на дому

    Syn:
    See:
    See:
    в) общ. приусадебный (расположенный рядом с домом, жилищем)
    See:
    г) общ. главный, основной

    home office — головной офис, штаб-квартира

    See:
    д) общ. исходный (о возвращении в первоначальное положение или достижении указанного положения)
    2) эк. внутренний (напр., о рынке); отечественный
    Syn:
    Ant:
    See:
    * * *
    дом, жилище
    . . Словарь экономических терминов .

    Англо-русский экономический словарь > home

  • 10 fabrication

    Англо-русский синонимический словарь > fabrication

  • 11 Cotton, William

    SUBJECT AREA: Textiles
    [br]
    b. 1819 Seagrave, Leicestershire, England
    d. after 1878
    [br]
    English inventor of a power-driven flat-bed knitting machine.
    [br]
    Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.
    [br]
    Bibliography
    1863, British patent no. 1,901 (flat-frame knitting machine).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).
    A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).
    RLH

    Biographical history of technology > Cotton, William

  • 12 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 13 Knight, Margaret E.

    [br]
    b. 1838 Maine, USA
    d. 1914 USA
    [br]
    American inventor.
    [br]
    Little is known of Knight's childhood, except that she was probably educated to high school level. She made her first invention at the age of 12, after seeing a woman cotton-mill worker injured when a dislodged shuttle fell on her. Knight set herself to design a mechanism that would shut down the machine if the thread broke and caused a shuttle to fly out. The device was widely used by cotton and woollen mills. Between that and her first patent in 1870, little is known of her activities; but she then embarked on a career of invention, achieving over 90 of them, earning herself the title "the female Edison ". Perhaps her most notable invention was a machine for making paper bags with square or satchel bottoms, which proved to be of great benefit to shoppers until the advent of the plastic bag. It won her little financial reward, but a decoration from Queen Victoria. Her other two main inventions related to the manufacture of shoes and, around 1902, to a rotary automobile engine. She worked for various companies, assigning to them her patent rights, so that at her death her estate was valued at less than $300.
    [br]
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press.
    LRD

    Biographical history of technology > Knight, Margaret E.

  • 14 Babbage, Charles

    [br]
    b. 26 December 1791 Walworth, Surrey, England
    d. 18 October 1871 London, England
    [br]
    English mathematician who invented the forerunner of the modern computer.
    [br]
    Charles Babbage was the son of a banker, Benjamin Babbage, and was a sickly child who had a rather haphazard education at private schools near Exeter and later at Enfield. Even as a child, he was inordinately fond of algebra, which he taught himself. He was conversant with several advanced mathematical texts, so by the time he entered Trinity College, Cambridge, in 1811, he was ahead of his tutors. In his third year he moved to Peterhouse, whence he graduated in 1814, taking his MA in 1817. He first contributed to the Philosophical Transactions of the Royal Society in 1815, and was elected a fellow of that body in 1816. He was one of the founders of the Astronomical Society in 1820 and served in high office in it.
    While he was still at Cambridge, in 1812, he had the first idea of calculating numerical tables by machinery. This was his first difference engine, which worked on the principle of repeatedly adding a common difference. He built a small model of an engine working on this principle between 1820 and 1822, and in July of the latter year he read an enthusiastically received note about it to the Astronomical Society. The following year he was awarded the Society's first gold medal. He submitted details of his invention to Sir Humphry Davy, President of the Royal Society; the Society reported favourably and the Government became interested, and following a meeting with the Chancellor of the Exchequer Babbage was awarded a grant of £1,500. Work proceeded and was carried on for four years under the direction of Joseph Clement.
    In 1827 Babbage went abroad for a year on medical advice. There he studied foreign workshops and factories, and in 1832 he published his observations in On the Economy of Machinery and Manufactures. While abroad, he received the news that he had been appointed Lucasian Professor of Mathematics at Cambridge University. He held the Chair until 1839, although he neither resided in College nor gave any lectures. For this he was paid between £80 and £90 a year! Differences arose between Babbage and Clement. Manufacture was moved from Clement's works in Lambeth, London, to new, fireproof buildings specially erected by the Government near Babbage's house in Dorset Square, London. Clement made a large claim for compensation and, when it was refused, withdrew his workers as well as all the special tools he had made up for the job. No work was possible for the next fifteen months, during which Babbage conceived the idea of his "analytical engine". He approached the Government with this, but it was not until eight years later, in 1842, that he received the reply that the expense was considered too great for further backing and that the Government was abandoning the project. This was in spite of the demonstration and perfectly satisfactory operation of a small section of the analytical engine at the International Exhibition of 1862. It is said that the demands made on manufacture in the production of his engines had an appreciable influence in improving the standard of machine tools, whilst similar benefits accrued from his development of a system of notation for the movements of machine elements. His opposition to street organ-grinders was a notable eccentricity; he estimated that a quarter of his mental effort was wasted by the effect of noise on his concentration.
    [br]
    Principal Honours and Distinctions
    FRS 1816. Astronomical Society Gold Medal 1823.
    Bibliography
    Babbage wrote eighty works, including: 1864, Passages from the Life of a Philosopher.
    July 1822, Letter to Sir Humphry Davy, PRS, on the Application of Machinery to the purpose of calculating and printing Mathematical Tables.
    Further Reading
    1961, Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage and Others, eds Philip and Emily Morrison, New York: Dover Publications.
    IMcN

    Biographical history of technology > Babbage, Charles

  • 15 Hancock, Thomas

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1786 Marlborough, Wiltshire, England
    d. 26 March 1865 Stoke Newington, London, England
    [br]
    English founder of the British rubber industry.
    [br]
    After education at a private school in Marlborough, Hancock spent some time in "mechanical pursuits". He went to London to better himself and c.1819 his interest was aroused in the uses of rubber, which until then had been limited. His first patent, dated 29 April 1820, was for the application of rubber in clothing where some elasticity was useful, such as braces or slip-on boots. He noticed that freshly cut pieces of rubber could be made to adhere by pressure to form larger pieces. To cut up his imported and waste rubber into small pieces, Hancock developed his "masticator". This device consisted of a spiked roller revolving in a hollow cylinder. However, when rubber was fed in to the machine, the product was not the expected shredded rubber, but a homogeneous cylindrical mass of solid rubber, formed by the heat generated by the process and pressure against the outer cylinder. This rubber could then be compacted into blocks or rolled into sheets at his factory in Goswell Road, London; the blocks and sheets could be used to make a variety of useful articles. Meanwhile Hancock entered into partnership with Charles Macintosh in Manchester to manufacture rubberized, waterproof fabrics. Despite these developments, rubber remained an unsatisfactory material, becoming sticky when warmed and losing its elasticity when cold. In 1842 Hancock encountered specimens of vulcanized rubber prepared by Charles Goodyear in America. Hancock worked out for himself that it was made by heating rubber and sulphur, and obtained a patent for the manufacture of the material on 21 November 1843. This patent also included details of a new form of rubber, hardened by heating to a higher temperature, that was later called vulcanite, or ebonite. In 1846 he began making solid rubber tyres for road vehicles. Overall Hancock took out sixteen patents, covering all aspects of the rubber industry; they were a leading factor in the development of the industry from 1820 until their expiry in 1858.
    [br]
    Bibliography
    1857, Personal Narrative of the Origin and Progress of the Caoutchouc or Indiarubber Manufacture in England, London.
    Further Reading
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87.
    LRD

    Biographical history of technology > Hancock, Thomas

  • 16 Whitney, Eli

    [br]
    b. 8 December 1765 Westborough, Massachusetts, USA
    d. 8 January 1825 New Haven, Connecticut, USA
    [br]
    American inventor of the cotton gin and manufacturer of firearms.
    [br]
    The son of a prosperous farmer, Eli Whitney as a teenager showed more interest in mechanics than school work. At the age of 15 he began an enterprise business manufacturing nails in his father's workshop, even having to hire help to fulfil his orders. He later determined to acquire a university education and, his father having declined to provide funds, he taught at local schools to obtain the means to attend Leicester Academy, Massachusetts, in preparation for his entry to Yale in 1789. He graduated in 1792 and then decided to study law. He accepted a position in Georgia as a tutor that would have given him time for study; this post did not materialize, but on his journey south he met General Nathanael Greene's widow and the manager of her plantations, Phineas Miller (1764–1803). A feature of agriculture in the southern states was that the land was unsuitable for long-staple cotton but could yield large crops of green-seed cotton. Green-seed cotton was difficult to separate from its seed, and when Whitney learned of the problem in 1793 he quickly devised a machine known as the cotton gin, which provided an effective solution. He formed a partnership with Miller to manufacture the gin and in 1794 obtained a patent. This invention made possible the extraordinary growth of the cotton industry in the United States, but the patent was widely infringed and it was not until 1807, after amendment of the patent laws, that Whitney was able to obtain a favourable decision in the courts and some financial return.
    In 1798 Whitney was in financial difficulties following the failure of the initial legal action against infringement of the cotton gin patent, but in that year he obtained a government contract to supply 10,000 muskets within two years with generous advance payments. He built a factory at New Haven, Connecticut, and proposed to use a new method of manufacture, perhaps the first application of the system of interchangeable parts. He failed to supply the firearms in the specified time, and in fact the first 500 guns were not delivered until 1801 and the full contract was not completed until 1809.
    In 1812 Whitney made application for a renewal of his cotton gin patent, but this was refused. In the same year, however, he obtained a second contract from the Government for 15,000 firearms and a similar one from New York State which ensured the success of his business.
    [br]
    Further Reading
    J.Mirsky and A.Nevins, 1952, The World of Eli Whitney, New York (a good biography). P.J.Federico, 1960, "Records of Eli Whitney's cotton gin patent", Technology and Culture 1: 168–76 (for details of the cotton gin patent).
    R.S.Woodbury, 1960, The legend of Eli Whitney and interchangeable parts', Technology and Culture 1:235–53 (challenges the traditional view of Eli Whitney as the sole originator of the "American" system of manufacture).
    See also Technology and Culture 14(1973):592–8; 18(1977):146–8; 19(1978):609–11.
    RTS

    Biographical history of technology > Whitney, Eli

  • 17 right

    1) право; правопритязание
    2) правомерный; справедливый; правильный; надлежащий
    - right in rem
    - right on name
    - right on remuneration
    - right to a patent
    - right to assign
    - right to claim priority of filing
    - right to exclude others
    - right to grant licenses
    - right to manufacture
    - right to obtain a patent
    - right to recall
    - right to sell
    - right to sublicense
    - right to terminate a contract
    - right to use
    - right confered
    - right of action
    - right of appeal
    - right of author of invention
    - right of author of rationalization proposal
    - right of authorship
    - right of defence
    - right of integrity
    - right of inventor to remuneration
    - right of joint use
    - right of owner
    - right of ownership
    - right of pre-emption
    - right of priority
    - right of prior use
    - right of property
    - right of publication
    - right of refrain
    - right of remuneration
    - right of reproduction
    - right of rescission
    - right of retention
    - right of secrecy
    - rights of third parties
    - right of use
    - right of usufructuary
    - right of utilization of invention
    - acquired rights
    - adaptation right
    - appropriative right
    - chartered right
    - commercial right
    - constitutional right
    - contractual rights
    - distribution right
    - exclusive right in a mark
    - exclusive right in a patent
    - exclusive right of the State
    - exclusive right to utilization of invention
    - future patent rights
    - global IP rights
    - government's patent right
    - inalienable right
    - incontestable right
    - industrial property right
    - infringed right
    - inherent right
    - intellectual property right
    - intervening right
    - inventor's right
    - legal right
    - literary and artistic property right
    - material right of inventors
    - monopoly right
    - moral right
    - neighbouring rights
    - nonproperty right of inventor
    - option right
    - patent rights
    - patentee's right
    - personal nonproperty right
    - pre-emption right
    - prerogative right
    - prior right
    - priority right
    - property right
    - property right of inventor
    - proprietary right
    - shop right
    - sole right
    - statute-barred right
    - third-party right
    - trademark right
    - treaty rights
    - underlying right
    - vested right

    Patent terms dictionary > right

  • 18 Biro, Laszlo Joszef (Ladislao José)

    SUBJECT AREA: Paper and printing
    [br]
    b. 29 September 1899 Budapest, Hungary
    d. 24 October 1985 Buenos Aires, Argentina
    [br]
    Hungarian inventor of the ballpoint pen.
    [br]
    Details of Biro's early life are obscure, but by 1939 he had been active as a painter, a member of the Hungarian Academy of Sciences and an inventor, patenting over thirty minor inventions. During the 1930s he edited a cultural magazine and noticed in the printing shop the advantages of quick-drying ink. He began experimenting with crude ballpoint pens. The idea was not new, for an American, John Loud, had patented a cumbersome form of pen for marking rough surfaces in 1888; it had failed commercially. Biro and his brother Georg patented a ballpoint pen in 1938, although they had not yet perfected a suitable ink or a reservoir to hold it.
    In 1940 Biro fled the Nazi occupation of Hungary and settled in Argentina. Two years later, he had developed his pen to the point where he could seek backers for a company to exploit it commercially. His principal backer appears to have been an English accountant, Henry George Martin. In 1944 Martin offered the invention to the US Army Air Force and the British Royal Air Force to overcome the problems aircrews were experiencing at high altitudes with leaking fountain pens. Some 10,000 ballpoints were made for the RAF. Licences were granted in the USA for the manufacture of the "biro", and in 1944 the Miles-Martin Pen Company was formed in Britain and began making them on a large scale at a factory near Reading, Berkshire; by 1951 its workforce had grown to over 1,000. Other companies followed suit; by varying details of the pen, they avoided infringing the original patents. One such entrepreneur, Miles Reynolds, was the first to put the pen on sale to the public in New York; it is reputed that 10,000 were sold on the first day.
    Biro had little taste for commercial exploitation, and by 1947 he had withdrawn from the Argentine company, mainly to resume his painting, in the surrealist style. Examples of his work are exhibited in the Fine Arts Museum in Budapest. He created an instrument that had a greater impact on written communication than any other single invention.
    [br]
    Further Reading
    "Nachruf: Ladislao José Biro (1899–1985)", HistorischeBurowelt (1988) 21:5–8 (with English summary).
    J.Jewkes, The Sources of Invention, pp. 234–5.
    LRD

    Biographical history of technology > Biro, Laszlo Joszef (Ladislao José)

  • 19 Bramah, Joseph

    [br]
    b. 2 April 1749 Stainborough, Yorkshire, England
    d. 9 December 1814 Pimlico, London, England
    [br]
    English inventor of the second patented water-closet, the beer-engine, the Bramah lock and, most important, the hydraulic press.
    [br]
    Bramah was the son of a tenant farmer and was educated at the village school before being apprenticed to a local carpenter, Thomas Allot. He walked to London c.1773 and found work with a Mr Allen that included the repair of some of the comparatively rare water-closets of the period. He invented and patented one of his own, which was followed by a water cock in 1783. His next invention, a greatly improved lock, involved the devising of a number of special machine tools, for it was one of the first devices involving interchangeable components in its manufacture. In this he had the help of Henry Maudslay, then a young and unknown engineer, who became Bramah's foreman before setting up business on his own. In 1784 he moved his premises from Denmark Street, St Giles, to 124 Piccadilly, which was later used as a showroom when he set up a factory in Pimlico. He invented an engine for putting out fires in 1785 and 1793, in effect a reciprocating rotary-vane pump. He undertook the refurbishment and modernization of Norwich waterworks c.1793, but fell out with Robert Mylne, who was acting as Consultant to the Norwich Corporation and had produced a remarkably vague specification. This was Bramah's only venture into the field of civil engineering.
    In 1797 he acted as an expert witness for Hornblower \& Maberley in the patent infringement case brought against them by Boulton and Watt. Having been cut short by the judge, he published his proposed evidence in "Letter to the Rt Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas…etc". In 1795 he was granted his most important patent, based on Pascal's Hydrostatic Paradox, for the hydraulic press which also incorporated the concept of hydraulics for the transmission of both power and motion and was the foundation of the whole subsequent hydraulic industry. There is no truth in the oft-repeated assertion originating from Samuel Smiles's Industrial Biography (1863) that the hydraulic press could not be made to work until Henry Maudslay invented the self-sealing neck leather. Bramah used a single-acting upstroking ram, sealed only at its base with a U-leather. There was no need for a neck leather.
    He also used the concept of the weight-loaded, in this case as a public-house beer-engine. He devised machinery for carbonating soda water. The first banknote-numbering machine was of his design and was bought by the Bank of England. His development of a machine to cut twelve nibs from one goose quill started a patent specification which ended with the invention of the fountain pen, patented in 1809. His coach brakes were an innovation that was followed bv a form of hydropneumatic carriage suspension that was somewhat in advance of its time, as was his patent of 1812. This foresaw the introduction of hydraulic power mains in major cities and included the telescopic ram and the air-loaded accumulator.
    In all Joseph Bramah was granted eighteen patents. On 22 March 1813 he demonstrated a hydraulic machine for pulling up trees by the roots in Hyde Park before a large crowd headed by the Duke of York. Using the same machine in Alice Holt Forest in Hampshire to fell timber for ships for the Navy, he caught a chill and died soon after at his home in Pimlico.
    [br]
    Bibliography
    1778, British patent no. 1177 (water-closet). 1784, British patent no. 1430 (Bramah Lock). 1795, British patent no. 2045 (hydraulic press). 1809, British patent no. 3260 (fountain pen). 1812, British patent no. 3611.
    Further Reading
    I.McNeil, 1968, Joseph Bramah, a Century of Invention.
    S.Smiles, 1863, Industrial Biography.
    H.W.Dickinson, 1942, "Joseph Bramah and his inventions", Transactions of the Newcomen Society 22:169–86.
    IMcN

    Biographical history of technology > Bramah, Joseph

  • 20 Hall, Charles Martin

    SUBJECT AREA: Metallurgy
    [br]
    b. 6 December 1863 Thompson, Ohio, USA
    d. 27 December 1914 USA
    [br]
    American metallurgist, inventor of the first feasible electrolytic process for the production of aluminium.
    [br]
    The son of a Congregationalist minister, Hall was educated at Oberlin College. There he was instructed in chemistry by Professor F.F.Jewett, a former student of the German chemist Friedrich Wöhler, who encouraged Hall to believe that there was a need for a cheap process for the manufacture of aluminium. After graduating in 1885, Hall set to work in his private laboratory exploring the method of fused salt electrolysis. On Wednesday 10 February 1886 he found that alumina dissolved in fused cryolite "like sugar in water", and that the bath so produced was a good conductor of electricity. He contained the solution in a pure graphite crucible which also acted as an efficient cathode, and by 16 February 1886 had produced the first globules of metallic aluminium. With two backers, Hall was able to complete his experiments and establish a small pilot plant in Boston, but they withdrew after the US Patent Examiners reported that Hall's invention had been anticipated by a French patent, filed by Paul Toussaint Héroult in April 1886. Although Hall had not filed until July 1886, he was permitted to testify that his invention had been completed by 16 February 1886 and on 2 April 1889 he was granted a seventeen-year monopoly in the United States. Hall now had the support of Captain A.E. Hunt of the Pittsburgh Testing Institute who provided the capital for establishing the Pittsburgh Reduction Company, which by 1889 was selling aluminium at $1 per pound compared to the $15 for sodium-reduced aluminium. Further capital was provided by the banker Andrew Mellon (1855–1937). Hall then turned his attention to Britain and began negotiations with Johnson Matthey, who provided land on a site at Patricroft near Manchester. Here the Aluminium Syndicate, owned by the Pittsburgh Reduction Company, began to produce aluminium in July 1890. By this time the validity of Hall's patent was being strongly contested by Héroult and also by the Cowles brothers, who attempted to operate the Hall process in the United States. Hall successfully sued them for infringement, and was confirmed in his patent rights by the celebrated ruling in 1893 of William Howard Taft, subsequently President of the USA. In 1895 Hall's company changed its name to the Pittsburgh Aluminium Company and moved to Niagara Falls, where cheap electrical power was available. In 1903 a legal compromise ended the litigation between the Hall and Héroult organizations. The American rights in the invention were awarded to Hall, and the European to Héroult. The Pittsburgh Aluminium Company became the Aluminium Company of America on 1 January 1907. On his death he left his estate, worth about $45 million, for the advancement of education.
    [br]
    Principal Honours and Distinctions
    Chemical Society, London, Perkin Medal 1911.
    Further Reading
    H.N.Holmes, 1930, "The story of aluminium", Journal of Chemical Education. E.F.Smith, 1914, Chemistry in America.
    ASD

    Biographical history of technology > Hall, Charles Martin

См. также в других словарях:

  • Manufacture du textile en Grande Bretagne — L’un des premiers développements de la Révolution industrielle était les changements dans l’industrie du textile en Grande Bretagne. L’évolution de la Révolution industrielle a commencé par une croissance de la production du textile qui s’est… …   Wikipédia en Français

  • invention — Synonyms and related words: Nachtmusik, absolute music, adaptation, air varie, aleatory, aleatory music, apparition, arrangement, artifact, authorship, beginning, brainchild, breakthrough, bringing to light, bubble, canard, casual discovery,… …   Moby Thesaurus

  • manufacture — Synonyms and related words: anatomy, architectonics, architecture, arrangement, artifact, assemble, assembly, basic training, brainchild, briefing, build, building, cast, casting, child, clearing the decks, coinage, compose, composition, compound …   Moby Thesaurus

  • Histoire du gaz manufacturé — L Histoire du gaz manufacturé se rapporte à la période qui a précédé l avènement de l électricité, où les villes furent éclairées et ensuite chauffées par des gaz manufacturés, c est à dire fabriqués par « distillation » dans des usines …   Wikipédia en Français

  • Textile manufacture during the Industrial Revolution — With the establishment of overseas colonies, the British Empire at the end of the 17th century/beginning of the 18th century had a vast source of raw materials and a vast market for manufactured goods. The manufacture of goods was performed on a… …   Wikipedia

  • Science and invention in Birmingham — Birmingham is the second largest city in the United Kingdom. It is one of the country s principal industrial centres and has an impressive history of industrial and scientific innovation.16th century1547: Although no record is kept to indicate… …   Wikipedia

  • Gaz manufacturé — Article principal : Gaz combustible. Les gaz manufacturés désignent des gaz qui ont été fabriqués à partir de 1785, date de leur invention, dans des usines à gaz. Ils sont utilisés d abord comme gaz d éclairage, par la suite comme… …   Wikipédia en Français

  • SAVONNERIE (MANUFACTURE DE LA) — SAVONNERIE MANUFACTURE DE LA Au début du XVIIe siècle, Pierre Dupont (lequel prétendait avoir inventé la technique des tapis veloutés de haute laine alors qu’elle existait bien avant lui), obtint d’Henri IV le privilège d’établir un atelier de… …   Encyclopédie Universelle

  • National Research Development Corporation v Commissioner of Patents (1959) 102 CLR 252 — The NRDC case has been important in clarifying what is meant by ‘manner of manufacture’ in respects of patent applications. The references to the Patents Act in this case refer to the Australian Patents Act 1952 (Cth) which was later repealed by… …   Wikipedia

  • Baekeland, Leo Hendrik — ▪ American chemist born Nov. 14, 1863, Ghent died Feb. 23, 1944, Beacon, N.Y., U.S.       U.S. industrial chemist who helped found the modern plastics (plastic) industry through his invention of Bakelite, the first thermosetting plastic (a… …   Universalium

  • Shelbyville, Illinois — Geobox|Settlement name = Shelbyville native name = other name = category = City etymology = official name = motto = nickname = image caption = symbol = country = United States state = Illinois region = Shelby region type = County district =… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»